docs(zfs): Minor style fixes (#1)

This commit is contained in:
hygienic-books 2023-03-05 03:59:06 +01:00
parent 9b11a12f4c
commit 60136f4807

View File

@ -85,7 +85,7 @@ In a running OS:
With your password changed in two locations (key file and initramfs) The boot process works as follows.
At boot time ZFSBootMenu will scan all pools that it can import for a `bootfs` property. If it only finds one pool with that property the dataset given as `bootfs` will be selected for boot with a 10-second countdown allowing manual interaction. With `bootfs` set ZFSBootMenu will not actively search through datasets for valid kernel and initramfs combinations, it'll instead accept `bootfs` as the default boot entry without entering the pool decryption passphrase.
At boot time ZFSBootMenu will scan all pools that it can import for a `bootfs` property. If it only finds one pool with that property the dataset given as `bootfs` will be selected for boot with a 10-second countdown allowing manual interaction. With `bootfs` set ZFSBootMenu will not actively search through datasets for valid kernel and initramfs combinations, it'll instead accept `bootfs` as the default boot entry without us entering the pool decryption passphrase.
Upon loading into a given dataset ZFSBootMenu will attempt to auto-load the matching decryption key. In our setup this will fail because we purposely stored the encryption key inside our `zpool/root/archlinux` dataset. ZFSBootMenu will prompt us to type in the decryption key.
@ -93,9 +93,9 @@ Lastly ZFSBootMenu loads our OS' kernel and initramfs combination via `kexec`. F
## Caveats in a password change
ZFS differentiates between user keys - also called wrapping keys - and the master key for any given encryption root. You never interact with the master key, you only pick your personal user key. Subsequently a user key change (in our use case we perceive this simply as a password change) has zero effect on data that's already encrypted. The operation is instant and merely reencrypted the already existing master key, the so-called _wrapped_ master key.
ZFS differentiates between user keys - also called wrapping keys - and the master key for any given encryption root. You never interact with the master key, you only pick your personal user key. Subsequently a user key change (in our use case we perceive this simply as a password change) has zero effect on data that's already encrypted. The operation is instant and merely reencrypts the already existing master key, the so-called _wrapped_ master key.
ZFS generates the master key exactly once when you enable encryption on a dataset - technically when it becomes an encryption root. Among other inputs it uses your user key to encrypt (to _wrap_) the master key. So when you change your user key it just means that the master key stays exactly the same and only the encrypted (_wrapped_) key changes.
ZFS generates the master key exactly once when you enable encryption on a dataset - technically when it becomes an encryption root. Among other inputs it uses your user key to encrypt (to _wrap_) the master key. When you change your user key it just means that the master key stays exactly the same and only the encrypted (_wrapped_) key changes.
`man 8 zfs-change-key` from `zfs-utils` version 2.1.9 adds:
> If the user's key is compromised, `zfs change-key` does not necessarily protect existing or newly-written data from attack. Newly-written data will continue to be encrypted with the same master key as the existing data. The master key is compromised if an attacker obtains a user key and the corresponding wrapped master key. Currently, `zfs change-key` does not overwrite the previous wrapped master key on disk, so it is accessible via forensic analysis for an indeterminate length of time.