1-get-initial-setup-working #2

Merged
hygienic-books merged 92 commits from 1-get-initial-setup-working into main 2023-03-05 03:02:48 +00:00
Showing only changes of commit 60136f4807 - Show all commits

View File

@ -85,7 +85,7 @@ In a running OS:
With your password changed in two locations (key file and initramfs) The boot process works as follows. With your password changed in two locations (key file and initramfs) The boot process works as follows.
At boot time ZFSBootMenu will scan all pools that it can import for a `bootfs` property. If it only finds one pool with that property the dataset given as `bootfs` will be selected for boot with a 10-second countdown allowing manual interaction. With `bootfs` set ZFSBootMenu will not actively search through datasets for valid kernel and initramfs combinations, it'll instead accept `bootfs` as the default boot entry without entering the pool decryption passphrase. At boot time ZFSBootMenu will scan all pools that it can import for a `bootfs` property. If it only finds one pool with that property the dataset given as `bootfs` will be selected for boot with a 10-second countdown allowing manual interaction. With `bootfs` set ZFSBootMenu will not actively search through datasets for valid kernel and initramfs combinations, it'll instead accept `bootfs` as the default boot entry without us entering the pool decryption passphrase.
Upon loading into a given dataset ZFSBootMenu will attempt to auto-load the matching decryption key. In our setup this will fail because we purposely stored the encryption key inside our `zpool/root/archlinux` dataset. ZFSBootMenu will prompt us to type in the decryption key. Upon loading into a given dataset ZFSBootMenu will attempt to auto-load the matching decryption key. In our setup this will fail because we purposely stored the encryption key inside our `zpool/root/archlinux` dataset. ZFSBootMenu will prompt us to type in the decryption key.
@ -93,9 +93,9 @@ Lastly ZFSBootMenu loads our OS' kernel and initramfs combination via `kexec`. F
## Caveats in a password change ## Caveats in a password change
ZFS differentiates between user keys - also called wrapping keys - and the master key for any given encryption root. You never interact with the master key, you only pick your personal user key. Subsequently a user key change (in our use case we perceive this simply as a password change) has zero effect on data that's already encrypted. The operation is instant and merely reencrypted the already existing master key, the so-called _wrapped_ master key. ZFS differentiates between user keys - also called wrapping keys - and the master key for any given encryption root. You never interact with the master key, you only pick your personal user key. Subsequently a user key change (in our use case we perceive this simply as a password change) has zero effect on data that's already encrypted. The operation is instant and merely reencrypts the already existing master key, the so-called _wrapped_ master key.
ZFS generates the master key exactly once when you enable encryption on a dataset - technically when it becomes an encryption root. Among other inputs it uses your user key to encrypt (to _wrap_) the master key. So when you change your user key it just means that the master key stays exactly the same and only the encrypted (_wrapped_) key changes. ZFS generates the master key exactly once when you enable encryption on a dataset - technically when it becomes an encryption root. Among other inputs it uses your user key to encrypt (to _wrap_) the master key. When you change your user key it just means that the master key stays exactly the same and only the encrypted (_wrapped_) key changes.
`man 8 zfs-change-key` from `zfs-utils` version 2.1.9 adds: `man 8 zfs-change-key` from `zfs-utils` version 2.1.9 adds:
> If the user's key is compromised, `zfs change-key` does not necessarily protect existing or newly-written data from attack. Newly-written data will continue to be encrypted with the same master key as the existing data. The master key is compromised if an attacker obtains a user key and the corresponding wrapped master key. Currently, `zfs change-key` does not overwrite the previous wrapped master key on disk, so it is accessible via forensic analysis for an indeterminate length of time. > If the user's key is compromised, `zfs change-key` does not necessarily protect existing or newly-written data from attack. Newly-written data will continue to be encrypted with the same master key as the existing data. The master key is compromised if an attacker obtains a user key and the corresponding wrapped master key. Currently, `zfs change-key` does not overwrite the previous wrapped master key on disk, so it is accessible via forensic analysis for an indeterminate length of time.